深圳市可易亚半导体科技有限公司

國家高新企業

cn en

新聞中心

NMOS管-NMOS管组织结构、工作原理及参数、方程等基本知识大全-KIA MOS管

信息來源:本站 日期:2018-08-24 

分享到:

NMOS管
什麽是NMOS管

NMOS英文全称为N-Metal-Oxide-Semiconductor。 意思为N型金属-氧化物-半导体,而拥有这种结构的晶体管我们称之为NMOS晶体管。 MOS晶体管有P型MOS管和N型MOS管之分。由MOS管构成的集成电路称为MOS集成电路,由NMOS组成的电路就是NMOS集成电路,由PMOS管组成的电路就是PMOS集成电路,由NMOS和PMOS两种管子组成的互补MOS电路,即CMOS电路。

NMOS管結構

在一塊摻雜濃度較低的P型矽襯底上,制作兩個高摻雜濃度的N+區,並用金屬鋁引出兩個電極,分別作漏極d和源極s。然後在半導體表面覆蓋一層很薄的二氧化矽(SiO2)絕緣層,在漏——源極間的絕緣層上再裝上一個鋁電極,作爲柵極g。

在襯底上也引出一個電極B,這就構成了一個N溝道增強型MOS管。MOS管的源極和襯底通常是接在一起的(大多數管子在出廠前已連接好)。它的柵極與其它電極間是絕緣的。圖(a)、(b)分別是它的結構示意圖和代表符號。代表符號中的箭頭方向表示由P(襯底)指向N(溝道)。P溝道增強型MOS管的箭頭方向與上述相反,如圖(c)所示。

NMOS管

NMOS管增強型工作原理

(1)vGS對iD及溝道的控制作用

① vGS=0 的情况

從圖1(a)可以看出,增強型MOS管的漏極d和源極s之間有兩個背靠背的PN結。當柵——源電壓vGS=0時,即使加上漏——源電壓vDS,而且不論vDS的極性如何,總有一個PN結處于反偏狀態,漏——源極間沒有導電溝道,所以這時漏極電流iD≈0。

② vGS>0 的情况

若vGS>0,則柵極和襯底之間的SiO2絕緣層中便産生一個電場。電場方向垂直于半導體表面的由柵極指向襯底的電場。這個電場能排斥空穴而吸引電子。

排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。

(2)導電溝道的形成:

當vGS數值較小,吸引電子的能力不強時,漏——源極之間仍無導電溝道出現,如圖1(b)所示。vGS增加時,吸引到P襯底表面層的電子就增多,當vGS達到某一數值時,這些電子在柵極附近的P襯底表面便形成一個N型薄層,且與兩個N+區相連通,在漏——源極間形成N型導電溝道,其導電類型與P襯底相反,故又稱爲反型層,如圖1(c)所示。vGS越大,作用于半導體表面的電場就越強,吸引到P襯底表面的電子就越多,導電溝道越厚,溝道電阻越小。開始形成溝道時的柵——源極電壓稱爲開啓電壓,用VT表示。

上面討論的N溝道MOS管在vGS<VT時,不能形成導電溝道,管子處于截止狀態。只有當vGS≥VT時,才有溝道形成。這種必須在vGS≥VT時才能形成導電溝道的MOS管稱爲增強型MOS管。溝道形成以後,在漏——源極間加上正向電壓vDS,就有漏極電流産生。

vDS對iD的影響

NMOS管

如图(a)所示,当vGS>VT且为一确定值时,漏——源电压vDS对导电沟道及电流iD的影响与结型場效應管相似。

漏極電流iD沿溝道産生的電壓降使溝道內各點與柵極間的電壓不再相等,靠近源極一端的電壓最大,這裏溝道最厚,而漏極一端電壓最小,其值爲VGD=vGS-vDS,因而這裏溝道最薄。但當vDS較小(vDS隨著vDS的增大,靠近漏極的溝道越來越薄,當vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)時,溝道在漏極一端出現預夾斷,如圖2(b)所示。再繼續增大vDS,夾斷點將向源極方向移動,如圖2(c)所示。由于vDS的增加部分幾乎全部降落在夾斷區,故iD幾乎不隨vDS增大而增加,管子進入飽和區,iD幾乎僅由vGS決定。

NMOS管增強型的特性曲線、方程及參數詳解

(1)特性曲線和電流方程

NMOS管

1)輸出特性曲線

N沟道增强型MOS管的输出特性曲线如图1(a)所示。与结型場效應管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。

2)轉移特性曲線

转移特性曲线如图1(b)所示,由于場效應管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用vDS大于某一数值(vDS>vGS-VT)后的一条转移特性曲线代替饱和区的所有转移特性曲线。

3)iD與vGS的近似關系

与结型場效應管相类似。在饱和区内,iD与vGS的近似关系式为

NMOS管

式中IDO是vGS=2VT時的漏極電流iD。

(2)參數

MOS管的主要参数与结型場效應管基本相同,只是增强型MOS管中不用夹断电压VP ,而用开启电压VT表征管子的特性。

NMOS管耗盡型基本結構

NMOS管

(1)結構:

N溝道耗盡型MOS管與N溝道增強型MOS管基本相似。

(2)區別:

耗盡型MOS管在vGS=0時,漏——源極間已有導電溝道産生,而增強型MOS管要在vGS≥VT時才出現導電溝道。

(3)原因:

制造N溝道耗盡型MOS管時,在SiO2絕緣層中摻入了大量的堿金屬正離子Na+或K+(制造P溝道耗盡型MOS管時摻入負離子),如圖1(a)所示,因此即使vGS=0時,在這些正離子産生的電場作用下,漏——源極間的P型襯底表面也能感應生成N溝道(稱爲初始溝道),只要加上正向電壓vDS,就有電流iD。

如果加上正的vGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,iD增大。反之vGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,iD减小。当vGS负向增加到某一数值时,导电沟道消失,iD趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用VP表示。与N沟道结型場效應管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在vGS<0的情况下工作。而后者在vGS=0,vGS>0,VP。

(4)電流方程:

NMOS管

在饱和区内,耗尽型MOS管的电流方程与结型場效應管的电流方程相同。

NMOS管邏輯門電路

NMOS逻辑门电路是全部由N沟道MOSFET构成。由于这种器件具有较小的几何尺寸,适合于制造大规模集成电路。此外,由于NMOS集成电路的结构简单,易于使用CAD技术进行设计。与CMOS电路类似,NMOS电路中不使用难于制造的电阻 。NMOS反相器是整个NMO逻辑门电路的基本构件,它的工作管常用增强型器件,而负载管可以是增强型也可以是耗尽型。现以增强型器件作为负载管的NMOS反相器为例来说明它的工作原理。

NMSO管

上圖是表示NMOS反相器的原理電路,其中T1爲工作管,T2爲負載管,二者均屬增強型器件。若T1和T2在同一工藝過程中制成,它們必將具有相同的開啓電壓VT。從圖中可見,負載管T2的柵極與漏極同接電源VDD,因而T2總是工作在它的恒流區,處于導通狀態。當輸入vI爲高電壓(超過管子的開啓電壓VT)時,T1導通,輸出vO;爲低電壓。輸出低電壓的值,由T1,T2兩管導通時所呈現的電阻值之比決定。通常T1的跨導gm1遠大于T2管的跨導gm2,以保證輸出低電壓值在+1V左右。當輸入電壓vI爲低電壓(低于管子的開啓電壓VT)時,T1截止,輸出vO爲高電壓。由于T2管總是處于導通狀態,因此輸出高電壓值約爲(VDD—VT)。

通常gm1在100~200之間,而gm2約爲5~15。T1導通時的等效電阻Rds1約爲3~10kΩ,而T2的Rds2約在100~200kΩ之間。負載管導通電阻是隨工作電流而變化的非線性電阻。

在NMOS反相器的基礎上,可以制成NMOS門電路。下圖即爲NMOS或非門電路。只要輸入A,B中任一個爲高電平,與它對應的MOSFET導通時,輸出爲低電平;僅當A、B全爲低電平時,所有工作管都截止時,輸出才爲高電平。可見電路具有或非功能,即

NMOS管

或非门的工作管都是并联的,增加管子的个数,输出低电平基本稳定,在整体电路设计中较为方便,因而NMOS门电路是以或非门为基础的。这种门电路不像TTL或CMOS电路作成小规模的单个芯片 ,主要用于大规模集成电路。

以上討論和分析了各種邏輯門電路的結構、工作原理和性能,爲便于比較,現用它們的主要技術參數傳輸延遲時間Tpd和功耗PD綜合描述各種邏輯門電路的性能,如圖所示。

NMOS管


聯系方式:鄒先生

聯系電話:0755-83888366-8022

手機:18123972950

QQ:2880195519

聯系地址:深圳市福田區車公廟天安數碼城天吉大廈CD座5C1


請搜微信公衆號:“KIA半導體”或掃一掃下圖“關注”官方微信公衆號

请“关注”官方微信公众号:提供  MOS管  技术帮助